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                                                                      Introduction  
 

 

The PhD thesis entitled „Gauging Axiomatics in the geometrical-dynamical theories of 

the main physical fields” is structured in four chapters. Each chapter can be independently 

analyzed from the others, ending with a conclusions section and a bibliographic list.  

In the first chapter, entitled „Fundamental Mathematical elements in the geometrisation  

and field theories”, I briefly presented notions and results of differential geometry [1], grouped 

in section I.1. „Elements of differential geometry”. The Killing vectors are associated with the 

space-time symmetries, these always being of a fundamental importance in Physics. In 

particular, the planar symmetry originates in some exact solutions of Einstein’s equations [2]. 

The metrics with planar symmetry can generalize the well-known Robertson-Walker 

geometries [3] for spaces with extra-dimensions. “The isometry group for a class of planary 

symmetric metrics in null-coordinate formulation “ is the title of section I.2. and the subject of 

a paper presented at the international conference TIM14 “Physics without frontiers”.  

In chapter II, entitled „Beil metrics, geodesics and the connection with the 

electrodynamics”, I analyzed the implications of this type of metrics in the theories of the 

unification of the physical fields. The models built on the basis of these metrics are the Finsler 

spaces. The theory of gauge transformations in Finsler spaces is applied in the general relativity 

[4]. These transformations produce new metrics which correspond to the geometrodynamics 

introduction of additional physical fields. The equation of the geodesic in the transformed space 

is equivalent to the motion equation [5] in the initial space where the additional field is included 

by a so called term of force. An example is given by a special transformation and by the 

resulting metric in which, the electromagnetic potential is more likely connected to the 

parameters of gauge transformation than to the traditional gauge potential. This actually means 

that the electromagnetic field corresponds to an additional connection on the basic variety and 

not only to a simple curving term [6]. The theoretical elements necessary to the study [7] 

already mentioned are grouped in section II.1, entitled „Finsler spaces, Lagrange spaces”.  

“Electrodynamics from modified Schwarzschild metric” is the title of section II.2. and the 

subject of a paper presented at the international conference TIM13 „Physics without frontiers”.   

The symmetry properties of the elementary particles are studied with the help of the 

external or spatial symmetry groups (Lorenz or Poincare groups) and with the help of internal 

symmetry groups (the unitary groups U(1), SU(3), SU(n). We keep taking into consideration 

transformations that do not change space-time coordinates but which change the field 

functions. Such transformations refer to the internal properties of the fields and particles for 

this reason being called internal transformations [8]. These are the very subject for study in 

chapter III, entitled „ Invariance geometrisation of the gauging of internal symmetries” 

The invariance of a langrangian for a group of global transformation is not 

automatically kept for the local transformations of the same group. In order to find a lagrangian 

to satisfy both conditions new types of fields are introduced , the so called gauge fields which 

modify the lagrangian in such a way as to also become invariant to local transformations 

(gauge) [8], situation presented in section III.1. „Internal gauging groups”. The subject of a 

paper, published in  Buletinul Institutului  Politehnic from Iasi (2012), is presented in section 

III.2. and the paper is entitled „ The Lorentz-invariant U(1)-gauge theory of scalars in static 

external fields and thermal properties”. The section III.3. with the title „ Analytic study of 

fermions in graphene; Heun functions and beyond” presents the subject of a paper published 

in Romanian Journal of Physics”(2013). 

In chapter IV, entitled „External symmetries in locally covariant formulation with 

applications in extra-dimensions and Schrödinger cosmology”, in the first part we apply the 

mathematical notions introduced so far in the formulation of the gauge theories. First, in the 



abelian case, of the Maxwell equations, then in the case of the invariant gauge geometry [9]. 

In the section IV.1., entitled „ Gauge invariance geometry”, we briefly present the necessary 

theories. After the Randall-Sundrum model had appeared, different braneworld scenarios were 

formulated starting from the idea that our Universe, in which the particles of the standard model 

are caught, is incorporated in a hyperspace (bulk) of a bigger dimension [10]. Since in the RS 

model the matter is practically excluded from the membrane, limitations mechanisms were 

proposed among which the most familiar is the coupling to a scalar field. Aspects of this 

problematic are approached in the second part of the chapter IV, in section IV.2., entitled „ 

Geometrisation principles in extra dimensions”[10]. The subject of a paper, published in the 

International Journal of Theoretical Physics (2012), is presented in section IV.3, entitled „ The 

quantum treatment of the 5D-warped Friedmann–Robertson–Walker Universe in Schrödinger 

picture”. At the same time, section IV.4., entitled „ On a Schrödinger-like equation with some 

special potential”, represents the content of a paper published in Buletinul Institutului 

Politehnic from Iasi, (2013). 
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Chapter I 
 

 

Fundamental mathematical elements in the geometrization and field theories  

 

I.1. Elements of Differential Geometry 

 

I.2. The isometry group for a class of planary symmetric metrics in null-coordinate 

formulation  

 

The  origins  of  the  planar  symmetries  are  to  be  found  in  some exact solutions of  

Einstein’s equations for astrophysical or cosmological objects relatively modern [1] such as: 

flat walls, empty cylinders or cords and different aspects of the critical collapse of non-

spherical symmetry. In addition, such metrics can generalize the well-known Robertson-

Walker geometries for spaces with extra-dimensions [2]. The study of the symmetrical physical 

fields reveal the simplicity and the repetition of some phenomena. In the case of an extremely 

symmetric system we find equations relatively easy to solve with solutions which have special 

properties. In a Riemannian variety we have symmetry if the movement of the points to a 

certain direction does not change the distances between them. Imposing the invariant of the 

metric for the movements of infinitesimal translation [3] 

�̅�𝑖 = 𝑥𝑖 + 𝛿𝑥𝑖 , 
in the direction of the vector field 𝑋𝑖  

𝛿𝑥𝑖 = 𝑋𝑖𝑑𝜆 , 
we have the following relation 

𝛿(𝑑𝑠2) = 𝛿(𝑔𝑖𝑘𝑑𝑥
𝑖𝑑𝑥𝑘) = 0. 

After calculations, we obtain symmetry if the system of differential equations  

 

𝑔𝑖𝑘,𝑙𝑋 
𝑙 + 𝑔𝑘𝑙𝑋,𝑖

𝑙 + 𝑔𝑖𝑙𝑋,𝑘
𝑙 = 0 

has a solution. Calculating the Lie derivative of the metric g, along the vector field   𝑋 = 𝑋𝑙𝜕𝑙,   
we get 

𝐿𝑋𝑔 = 𝐿𝑋(𝑔𝑖𝑘𝑑𝑥
𝑖𝑑𝑥𝑘) = (𝑔𝑖𝑘,𝑙𝑋 

𝑙 + 𝑔𝑙𝑘𝑋,𝑖
𝑙 + 𝑔𝑖𝑙𝑋,𝑘

𝑙 )𝑑𝑥𝑖𝑑𝑥𝑘. 

Then   X  is called Killing vector field relative to g if 

 

𝐿𝑋𝑔 = 0, 

where 𝐿𝑋(. )is the Lie derivative, which means  

 

(𝐿𝑋𝑔)𝑖𝑘 = 𝑔𝑖𝑘,𝑙𝑋 
𝑙 + 𝑔𝑘𝑙𝑋,𝑖

𝑙 + 𝑔𝑖𝑙𝑋,𝑘
𝑙  ,  since 𝑔𝑘𝑙 = 𝑔𝑙𝑘.                      (1) 

We consider the  Riemannian variety M ,  endowed with planary symmetric metric 

   

𝑑𝑠2 = 𝑒2𝑓(𝑧,𝑡)(𝑑𝑥2 + 𝑑𝑦2) + 𝑑𝑧2 − 𝑑𝑡2.                                             (2) 

Performing the null-type substitutions [4]  

𝑢 =
𝑡 − 𝑧

√2
,   𝑣 =  

𝑡 + 𝑧

√2
 , 

metric it can be written as 

 
                            𝑑𝑠2 = 𝑔𝑖𝑘𝑑𝑥

𝑖𝑑𝑥𝑘 = 𝑒2𝑓(𝑢,𝑣)𝛿𝐴𝐵𝑑𝑥
𝐴𝑑𝑥𝐵 − 2𝑑𝑢𝑑𝑣,                            (3) 

where 𝑢 = 𝑥3, 𝑣 = 𝑥4, 𝐴, 𝐵 = 1,2̅̅ ̅̅ . 

In order to work out the Killing vector field we start with the Lie derivative (1)  imposing the 

isometry condition [5] 



𝑔𝑖𝑘,𝑙𝑋 
𝑙 + 𝑔𝑘𝑙𝑋,𝑖

𝑙 + 𝑔𝑖𝑙𝑋,𝑘
𝑙 = 0, 𝑖, 𝑘 = 1,4̅̅ ̅̅  .                                             (4) 

Finally, for the analyzed metric we have derived the following Killing generators 𝐾1, … , �̂�6 , 

under the form  

  

𝐾1 = 𝜕𝑥, 𝑍0
1, 𝐾2 = 𝜕𝑦 , 𝑍0

2,  �̂�3 = 𝑦𝜕𝑥 − 𝑥𝜕𝑦 , 𝜔,  

 𝐾4 = 𝜕𝑣 , 𝐴0
4, 𝐾5 = 𝑈𝜕𝑥 + 𝑥𝜕𝑣 ,    𝐾6 = 𝑈𝜕𝑦 + 𝑦𝜕𝑣 .  

 

These correspond to the general Killing vectorial field [5] 

 �⃗� = 𝑍0
1𝜕𝑥 +  𝜔𝑦𝜕𝑥 + 𝐴1

4𝑈𝜕𝑥 + 𝑍0
2𝜕𝑦 −𝜔𝑥𝜕𝑦 + 𝐴2

4𝑉𝜕𝑦 + 𝐴1
4𝑥𝜕𝑣 + 𝐴2

4𝑦𝜕𝑣 + 𝐴0
4𝜕𝑣 

 

and to the respective infinitesimal transformations 

 
𝑑𝑥

𝑑𝜇
= 𝑈,

𝑑𝑣

𝑑𝜇
= 𝑥,

𝑑𝑦

𝑑𝜇
= 𝑉,

𝑑𝑣

𝑑𝜇
= 𝑦,   

𝑑𝑥

𝑑𝑣
=
𝑈

𝑥
 , 𝑈 ∼ 𝑥2 ,

𝑑𝑦

𝑑𝑣
=
𝑉

𝑦
 , 𝑉 ∼ 𝑦2 . 

 

 

Conclusions Chapter I 

 

 

The origins  of planar symmetry reside in  some exact solutions of  Einstein  equations  

for relatively modern astrophysical or cosmologic objects such as: planar walls, hollow 

cylinders or strings and various aspects of non-spherically symmetric critical collapse. In 

addition, such metrics can generalize the well-known Robertson-Walker geometries to spaces 

with extra-dimensions and more intriguing causalities.  

Starting from a class of planary symmetric metrics in null-coordinate formulation  

I obtained the Killing vectors. By using an adequate change of coordinates, I calculated the Lie 

derivative of the metric 

𝑑𝑠2 = 𝑒2𝑓(𝑧,𝑡)(𝑑𝑥2 + 𝑑𝑦2) + 𝑑𝑧2 − 𝑑𝑡2  . 
By  respecting   the  conditions  of   integrability  I  solved  the  corresponding   Killing  

equations.  

These results are the very subject of the paper [6].  
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Chapter  II 

 
Beil metrics, geodesics and the connection with the electrodynamics 

 

II. 1. Finsler spaces,  Lagrange spaces  

 

II.2. Electrodynamics from modified Schwarzschild metric 

 

Let be a Minkowski  space in which a charged particle is moving in the presence of an  

electromagnetic field. The motion is described by Lorentz equations [2]. R.G. Beil proposes a 

modification of  the metric of the space such that the Lorentz  equations become the equations  

of geodesics in the new metric. [3]. The electromagnetic force then results from the new 

connection. I resume the main ideas and results from the article [3] of R.G. Beil, using his 

notations. He considered a Minkowski space [1] 
 

 𝑐2𝑑𝜏2 = 𝜂𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈  , (1) 

where the metric signature is (+1,-1,-1,-1). The trajectory parameter is proper time  𝜏, the 

position of the particle is given by 𝑥𝜇(𝜏), the speed and acceleration are 𝑣𝜇 = 𝑑𝑥𝜇/𝑑𝜏 and 

𝑎𝜇 = 𝑑𝑣𝜇/𝑑𝜏. The particle is driven by an electromagnetic field from a potential 𝐴𝜇(𝑥) the 

equation of motion (Lorentz) [2] is 

 𝑎𝜇 = 𝑒(𝑚𝑐)−1𝜂𝜇𝜈𝐹𝜈𝜆𝑣
𝜆 (2) 

where 𝐹𝜇𝜈 = 𝐴𝜈,𝜇 − 𝐴𝜇,𝜈 is the electromagnetic tensor.  

The trajectory described by this equation is not a geodesic in Minkowski space. Regarding the 

particle, the new metric produces a change of scale along the trajectory, which is characterized 

by a new trajectory parameter 𝜏̅ , so that 

𝑐2𝑑𝜏̅2 = �̅�𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈  .                                                               (3) 

In the new space, the speed and acceleration are �̅�𝜇 = 𝑑𝑥𝜇/𝑑𝜏̅ = (𝑑𝑥𝜇/𝑑𝜏)𝑏  and 

�̅�𝜇 = 𝑑�̅�𝜇/𝑑𝜏̅ =  𝑏2𝑎𝜇 + 𝑣𝜇(𝑑𝑏/𝑑𝜏̅).  The scale function is considered 𝑏 = 𝑑𝜏 𝑑𝜏̅⁄   . 
The main idea is the assumption that the form of the metric �̅�𝜇𝜈 is  

 �̅�𝜇𝜈 = 𝜂𝜇𝜈 + 𝑘𝐵𝜇𝐵𝜈 , (4) 

where 𝑘 is a constant to be determined and vector 𝐵𝜇 is related to the electromagnetic potential 

in Minkowski space, 𝐴𝜇. By replacing (4) in (3), we get 

𝑐2𝑑𝜏̅2 = �̅�𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = �̅�𝜇𝜈𝑣

𝜇𝑣𝜈𝑑𝜏2 = [𝑐2 + 𝑘(𝐵𝜇𝑣
𝜇)
2
] 𝑑𝜏2, 

from which 

𝑏 = [1 + 𝑘𝑐−2(𝐵𝜇𝑣
𝜇)
2
]
−1 2⁄

.                                             (5) 

We notice, from relation (5), that 𝑏 depends on the point and speed. The  geodesic  equation  

in  the  new  metric is [3]   �̅�𝜇 + Γ̅𝛼𝛽
𝜇
�̅�𝛼�̅�𝛽 = 0  or,  after  the computation of Christoffel 

connection, 



𝑎𝜇 + 𝑘𝑏2 [𝐵𝜇 −
𝑣𝜇

𝑐2
(𝐵𝛼𝑣

𝛼)] 𝑑(𝐵𝛼𝑣
𝛼)/𝑑𝜏 + 𝑘𝜂𝜇𝜆𝐻𝛽𝜆(𝐵𝛼𝑣

𝛼)𝑣𝛽 =  0, (6) 

where  𝐻𝜇𝜈 = 𝐵𝜈,𝜇−𝐵𝜇,𝜈. By comparing  equation (6) with  Lorentz  equation (2) we get  their 

coincidence, only  if  the vector 𝐵𝜇 is connected to the electromagnetic potential 𝐴𝜇 through a 

gauge transformation under the form of  

𝐵𝜇 = 𝐴𝜇 +
𝜕Λ

𝜕𝑥𝜇
                                                                 (7) 

and we have the relation 

𝑘(𝐵𝛼𝑣
𝛼) = −𝑒(𝑚𝑐)−1.                                                       (8) 

In these conditions we also get 𝐻𝜇𝜈 = 𝐹𝜇,𝜈. The identification of 𝑘 follows after the study of 

the field equations.  We apply the  R. G. Beil method [3] to the situation in which the 

Minkowsky metric  𝜂𝜇𝜈 is replaced by the Schwarzschild metric.  

 

The case of Schwarzschild metric 

 

     We consider, instead of a flat metric 𝜂𝜇𝜈, a Schwarzschild metric 𝑔𝛼𝛽 . The expression 

for Schwarzschild metric with static spatial symmetry is [4] 

 

 𝑑𝑠2 = (1 −
𝑟𝑔

𝑟
) (𝑑𝑥0)2 − (1 −

𝑟𝑔

𝑟
)
−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2), (9) 

where  𝑟𝑔 is the gravitational radius and 𝑥0 = 𝑐𝑡. 

The Lorentz equation of the particle motion in 𝑔𝛼𝛽 space with potential 𝐴𝜇  is 

 

 𝑎𝜇 = 𝑒(𝑚𝑐)−1𝑔𝜇𝜈𝐹𝜈𝜆𝑣
𝜆 (5) 

where 𝐹𝜇𝜈 = 𝐴𝜈,𝜇−𝐴𝜇,𝜈. We transform    �̅�𝛼𝛽 = 𝑔𝛼𝛽 + 𝑘𝐵𝛼𝐵𝛽  into spherical coordinates 

 

�̅�𝛼𝛽 =

(

 
 

1 − 𝑟𝑔 𝑟 + 𝑘𝐵0
2⁄ 𝑘𝐵0𝐵1 𝑘𝐵0𝐵2            𝑘𝐵0𝐵3

𝑘𝐵1𝐵0 −(1 − 𝑟𝑔 𝑟⁄ )
−1 + 𝑘𝐵1

2 𝑘𝐵1𝐵2            𝑘𝐵1𝐵3

𝑘𝐵2𝐵0
𝑘𝐵3𝐵0

𝑘𝐵2𝐵1
𝑘𝐵3𝐵1

   −𝑟2 + 𝑘𝐵2
2

          𝑘𝐵3𝐵2

𝑘𝐵2𝐵3
−𝑟2𝑠𝑖𝑛2𝜃 + 𝑘𝐵3

2
)

 
 

. 

Considering 𝐵 = (𝐵0(𝑟), 0,0,0),  then 

 

�̅�𝛼𝛽 =

(

 
 
1 − 𝑟𝑔 𝑟 + 𝑘𝐵0

2(𝑟)⁄ 0 0          0

0 −(1 − 𝑟𝑔 𝑟⁄ )
−1 0          0

0
0

0
0

     −𝑟2

      0
0

−𝑟2𝑠𝑖𝑛2𝜃)

 
 

 

By using the technique from  [3]  it is obtained the following equation of the geodesic  

 

𝑎𝜇 + 𝑘𝑏2 [𝐵𝜇 −
𝑣𝜇

𝑐2
(𝐵𝛼𝑣

𝛼)] 𝑑(𝐵𝛼𝑣
𝛼)/𝑑𝜏 + 𝑘𝑔𝜇𝜆𝐻𝛽𝜆(𝐵𝛼𝑣

𝛼)𝑣𝛽 = 0            (6) 

where 𝐻𝜇𝜈 = 𝐵𝜈,𝜇−𝐵𝜇,𝜈. It takes place the coincidence of the geodesic equation with the 

Lorentz equation only if the 𝐵𝜇 is connected to the electromagnetic potential electromagnetic 

𝐴𝜇 through a gauge transformation under the form  

𝐵𝜇 = 𝐴𝜇 +
𝜕Λ

𝜕𝑥𝜇
                                                            (7) 

and it takes place the relation 

𝑘(𝐵𝛼𝑣
𝛼) = −𝑒(𝑚𝑐)−1.                                              (8) 



The  dependence  on the point (x) and speed (v) of  the scale factor  𝑏 is transmitted to  

vector 𝐵𝜇 and even further to the metric �̅�𝜇𝜈. Being dependent on point and speed, �̅�𝜇𝜈(𝑥, 𝑣) 

is a generalized Lagrange metric [5].  

The  metric �̅�𝜇𝜈 is  reduced  to  a  Finsler  metric if  it is 0-omogenous in  𝜆, condition  

reduces to equality  𝐵𝜇(𝑥, 𝜆𝑣 ) = 𝐵𝜇(𝑥, 𝑣). In this case we obtain Finsler function of the form 

 

𝐹(𝑥𝜇, 𝑣𝜇) = (�̅�𝜇𝜈𝑣
𝜇𝑣𝜈)1/2 . 

Further, the metric �̅�𝜇𝜈 may be reduced to a Riemannian metric if 𝐵𝜇 depends only on 

the point  x. Identification of 𝑘  follows the study of field equations [2].  

The non-zero components of the Ricci tensor for the metric �̅�𝛼𝛽 are: 

 

𝑅11 = −𝑘[4𝑟
3(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0

2)]
−1
(−8𝑟3𝐵0𝐵0

′′𝑟𝑔 + 4𝑟
2𝐵0𝐵0

′′𝑟𝑔
2 − 4𝑟3𝑘𝐵0

3𝐵0
′′𝑟𝑔

− 18𝑟2𝑟𝑔𝐵0𝐵0
′) 

−𝑘[4𝑟3(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)]

−1
(10𝑟𝑟𝑔

2𝐵0𝐵0
′ − 6𝑟2𝑟𝑔𝑘𝐵0

3𝐵0
′ + 4𝑟4𝐵0

′2 + 8𝑟3𝐵0𝐵0
′ + 𝑟𝑔

2𝐵0
2) 

−𝑘[4𝑟3(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)]

−1
(8𝑘𝑟3𝐵0

3𝐵0
′ − 8𝑟3𝐵0

′2𝑟𝑔 + 4𝑟
2𝑟𝑔
2𝐵0

′2 + 4𝑟2𝐵0
′𝐵0
′′ + 4𝑘𝑟4𝐵0

3𝐵0
′′) , 

 

𝑅22 = [4𝑟(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
(𝑟 − 𝑟𝑔)]

−1
(−8𝑘𝑟3𝐵0𝐵0

′′𝑟𝑔 + 4𝑟
2𝐵0𝐵0

′′𝑟𝑔
2 − 4𝑟3𝑘𝐵0

3𝐵0
′′𝑟𝑔

− 2𝑟2𝑟𝑔𝐵0𝐵0
′) + 

+ [4𝑟(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
(𝑟 − 𝑟𝑔)]

−1
(2𝑟𝑟𝑔

2𝐵0𝐵0
′ + 2𝑟2𝑟𝑔𝑘𝐵0

3𝐵0
′ + 4𝑟4𝐵0

′2 − 8𝑟3𝑟𝑔𝐵0
′2

+ 4𝑟4𝐵0𝐵0
′′) + 

+[4𝑟(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
(𝑟 − 𝑟𝑔)]

−1
(4𝑟4𝐵0

′2 + 4𝑘𝑟4𝐵0
3𝐵0

′′ + 4𝑟𝑟𝑔𝐵0
2 − 3𝑟𝑔

2𝐵0
2 + 4𝑘𝑟𝑟𝑔𝐵0

4), 

 

𝑅33 = [2(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)]

−1
(2𝑟2𝐵0

′ − 2𝑟𝑟𝑔𝐵0
′ − 𝑟𝑔𝐵0)𝑘𝐵0, 

 

𝑅44=[2(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)]

−1
𝑠𝑖𝑛2𝜃 𝑘𝐵0(2𝑟

2𝐵0
′ − 2𝑟𝑟𝑔𝐵0

′ − 𝑟𝑔𝐵0), 

 

where 𝐵0
′ = 𝑑𝐵0/𝑑𝑟 and 𝐵0

′′ = 𝑑2𝐵0 𝑑𝑟
2⁄ . 

The curvature scalar 𝑅 = �̅�𝜈𝜇𝑅𝜈𝜇 is 

 

𝑅 = −𝑘 [2𝑟2(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(−8𝑟3𝐵0𝐵0

′′𝑟𝑔 + 4𝑟
2𝐵0𝐵0

′′𝑟𝑔
2 − 4𝑟3𝑘𝐵0

3𝐵0
′′𝑟𝑔

− 18𝑟2𝑟𝑔𝐵0𝐵0
′) 

−𝑘 [2𝑟2(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(10𝑟𝑟𝑔

2𝐵0𝐵0
′ − 6𝑟2𝑟𝑔𝑘𝐵0

3𝐵0
′ + 4𝑟4𝐵0

′2 + 8𝑟3𝐵0𝐵0
′ + 𝑟𝑔

2𝐵0
2) − 

−𝑘 [2𝑟2(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(8𝑘𝑟3𝐵0

3𝐵0
′ − 8𝑟3𝐵0

′2𝑟𝑔 + 4𝑟
2𝑟𝑔
2𝐵0

′2 + 4𝑟2𝐵0
′𝐵0
′′

+ 4𝑘𝑟4𝐵0
3𝐵0

′′). 

The non-zero components of the Einstein tensor, 𝐺𝜈𝜇 = 𝑅𝜈𝜇 −
1

2
�̅�𝜈𝜇𝑅  are: 

 

𝐺22 = −𝑘𝐵0[𝑟(𝑟 − 𝑟𝑔)(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)]

−1
(2𝑟2𝐵0

′ − 2𝑟𝑔𝐵0
′𝑟 − 𝑟𝑔𝐵0), 

 

 

 

 



𝐺33 = −𝑘 [4(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(4𝐵0𝐵0

′𝑟3 − 10𝑟𝑔𝐵0𝐵0
′𝑟2 + 4𝑘𝐵0

3𝐵0
′𝑟3 + 6𝑟𝑟𝑔

2𝐵0𝐵0
′) 

−𝑘 [4(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(−2𝑘𝑟𝑔𝐵0

3𝐵0
′𝑟2 + 2𝑟𝑟𝑔𝐵0

2 − 𝑟𝑔
2𝐵0

2 + 2𝑘𝑟𝑔𝐵0
4 − 8𝑟3𝑟𝑔𝐵0𝐵0

′′) 

−𝑘 [4(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(4𝑟2𝐵0𝐵0

′′𝑟𝑔
2 − 4𝑘𝑟3𝑟𝑔𝐵0

3𝐵0
′′ + 4𝑟4𝐵0

′′ − 8𝑟3𝑟𝑔𝐵0
′2 + 4𝑟2𝑟𝑔

2𝐵0
′2)

− 𝑘 [4(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(4𝑟4𝐵0𝐵0

′′ + 4𝑘𝑟4𝐵0
3𝐵0

′′), 

 

𝐺44 = −𝑘 𝑠𝑖𝑛
2𝜃 [4(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0

2)
2
]
−1
(4𝐵0𝐵0

′𝑟3 − 10𝑟𝑔𝐵0𝐵0
′𝑟2 + 4𝑘𝐵0

3𝐵0
′𝑟3

+ 6𝑟𝑟𝑔
2𝐵0𝐵0

′) 

−𝑘 𝑠𝑖𝑛2𝜃 [4(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(−2𝑘𝑟𝑔𝐵0

3𝐵0
′𝑟2 + 2𝑟𝑟𝑔𝐵0

2 − 2𝑟𝑟𝑔𝐵0
2 − 𝑟𝑔

2𝐵0
2 + 2𝑘𝑟𝑟𝑔𝐵0

4) 

−𝑘 𝑠𝑖𝑛2𝜃 [4(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(4𝑟2𝐵0𝐵0

′′𝑟𝑔
2 − 4𝑘𝑟3𝑟𝑔𝐵0

3𝐵0
′′ + 4𝑟4𝐵0

′2 − 8𝑟3𝑟𝑔𝐵0
′2) 

−𝑘 𝑠𝑖𝑛2𝜃 [4(𝑟 − 𝑟𝑔 + 𝑘𝑟𝐵0
2)
2
]
−1
(4𝑟2𝑟𝑔

2𝐵0
′2 + 4𝑟4𝐵0𝐵0

′′ + 4𝑘𝑟4𝐵0
3𝐵0

′′). 

The field equations for a particle in an electromagnetic field of potential 𝐴𝜇(𝑥)  are [5] 

 

𝐺𝜂𝛾 = 8𝜋𝜅𝑐
−4(𝜌0�̅�𝜂�̅�𝛾 + �̅�𝜂𝛾), 

with 𝜅 the gravitational constant and 𝜌0 the proper matter density. 

According to [3], for 𝑘 = 4𝜅𝑐−4, the electromagnetic energy tensor �̅�𝜂𝛾is a part of Einstein 

tensor,  i.e. metric comes from �̅�𝛼𝛽. 

 

 

Conclusions Chapter II 

 

In  section  II.2., using  an idea of  R.G. Beil, we modify the  Minkowski metric of the  

space in which a charged particle moves according to Lorentz equation. The modification is 

such that, with the new metric and in the new space, the particle moves on a geodesic. The 

process of obtaining the metric appears like a gauge transformation. The dependence on the 

point (x) and speed (v) of the scale factor 𝑏 is transmitted to vector  𝐵𝜇 and even further to the 

metric �̅�𝜇𝜈.  Being dependent on point and speed,  �̅�𝜇𝜈(𝑥, 𝑣)  is a generalized Lagrange metric. 

The  dependence  on the point (x) and speed (v) of  the scale factor  𝑏 is transmitted to  

vector 𝐵𝜇 and even further to the metric �̅�𝜇𝜈. Being dependent on point and speed, �̅�𝜇𝜈(𝑥, 𝑣) 

is a generalized Lagrange metric [5].  

The  metric �̅�𝜇𝜈 is  reduced  to  a  Finsler  metric if  it is 0-omogenous in  𝜆, condition  

reduces to equality  𝐵𝜇(𝑥, 𝜆𝑣 ) = 𝐵𝜇(𝑥, 𝑣). In this case we obtain Finsler function of the form 

𝐹(𝑥𝜇, 𝑣𝜇) = (�̅�𝜇𝜈𝑣
𝜇𝑣𝜈)1/2 . 

Further, the metric �̅�𝜇𝜈 may be reduced to a Riemannian metric if 𝐵𝜇 depends only on 

the point  x. Electromagnetic energy tensor �̅�𝜂𝛾 is part of the Einstein tensor, so comes from 

metric �̅�𝛼𝛽.  

These results are the very subject of the paper [6].  
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Chapter III  
 

 
Invariance geometrisation of the gauging of internal symmetries 

 

III. 1. Internal gauging groups  

III.2. The Lorentz-invariant U(1)-gauge theory of scalars in static external fields 

and thermal properties 

 

The discovery of the quantum Hall effects, both integer and fractional [1], opened a 

new area of investigations, in the physics of two-dimensional evolution of bosons and 

fermions. In the case of the integer quantum Hall effect (IQHE), the quantized conductivity 

appears to be the integer multiplicity of 2 /q h ; a simple combination of fundamental 

constants. This effect does not depend on specific parameters of the material, being 

connected with the Landau energy levels, characterizing the electrons evolving in magnetic 

fields. It is important to add, however, that impurities and boundary conditions, which 

remove the Landau levels degeneracy, play a vital role in the quantum Hall effect [1]. On 

the other hand, the so-called fractional quantum Hall effect (FQHE) is an example of the 

new physics that has emerged in recent years as a result of active research in quantum-

confined carriers in semiconductor hetero-structures [2].  

It was first observed in a high-mobility, two-dimensional, modulation-doped GaAs-

(AlGa)As samples prepared by molecular-beam epitaxy [3].  

The presence of a magnetic field perpendicular to a two-dimensional electron system 

quantizes the carriers in-plane motion and transforms their energy spectrum into a set of 

discrete, highly degenerate levels [4].  

With the discovery of the new material called graphene, it has been stated that the 

charge carries are better described by the relativistic field equations [5].  

The aim of the present work is to develop a quantum analysis of relativistic bosons, 

subjected to a static configuration of orthogonal magnetic and electric fields, at finite 

temperature. 



Klein-Gordon equation 

 

In the usual Cartesian coordinates 
2 2 2 2 2-ds dx dy dz dt   , 

the relativistic complex charged boson of mass 
0

m , evolving in a static magnetic field 

orthogonal to a static electric field [6]  is described by the well-known 𝑈(1)- gauge invariant 
Lagrangian density  

 
𝑳 = 𝜂𝒊𝒋(𝐷𝑖𝜓)

∗𝐷𝑗𝜓 +𝑚0
2𝜓∗𝜓 ,                                                  (1)                                   

where D stands for the 𝑈(1)- gauge covariant derivative, 
 

, ,

i i
= , =i i i i i i

q q
Dψ ψ Aψ Dψ ψ Aψ    . 

We use the convenient gauge, 

 

0
0 40, ,x z y

E
A A A B x A x

c
    , 

where 𝐸0  and 𝐵0 are the orthogonal electric and magnetic fields. 
By employing the usual procedure [6], we come to the corresponding Euler-Lagrange 

equation      

                                
2 2
0

2
0ij

i j

m c
η D D ψ ψ  ,                                                     (2)                             

whose explicit form is  

, 0 , 0 ,2

2 2 22 2
20 0
02 2 2

2i 2i

0 ,

i j
i j y t

q q
η ψ B xψ E xψ

c

m c Eq x
B ψ

c

 

  
     
   

                                           (3) 

where  and c have been inserted in view of a better comparison of the theoretical 

predictions with experimental data.  

Thus,  putting  everything   together,  the  wave  function  gets  the  explicit  form  [7] 

 

𝜓 = (2𝑛𝑛! √𝜋)
−1 2⁄

exp [−
𝜌2

2
+
𝑖

ℏ
(𝑝𝑦 + 𝑝𝑧𝑧 − 𝑤𝑡)]𝐻𝑛(𝜌)                 (12)       

once we impose the condition 

 

 
 

2

2 2 20 0

02 2
2 1 ,z

wB pE
p m c n q

c





   

 
 
  

 

which leads to the energy-quantization relation 

 

𝑤𝑛 = −𝑝
𝐸0

𝐵0
±

𝛽

𝐵0
𝑚0𝑐

2√1 +
𝑝𝑧
2

𝑚0
2𝑐2
+ (2𝑛 + 1)

𝑞ℏ𝛽

𝑚0
2𝑐2

  .                        (13) 

 

In the case of an infinite number of energy levels, ,N   the same energy spectrum 

(21), with the notations (22), leads to the classical partition function, namely 

 



                             
 

0

exp
2

exp .

2sinh
2

n

n

a

Z



 






  
   

    


                                   (30) 

The characteristic function (24), meaning free energy, becomes 

 

                                
2

0

0 0

ln 2sinh
2 2

z Ep
F p kT

m B

  
    

 

 ,                                 (31)  

leading to the following negative magnetization  

 

                                

0

0
2

0

coth ,
2

BP

EF
M p

B B



  

     
   

                                (32) 

which contains, besides the usual coth-term multiplying the Bohr-Procopiu magneton [8], 

an additional Hall-type contribution. 

In order to put the main results in a simpler form, we introduce the dimension-less 

variable 

      
2

x
kT


  .                                                           (33) 

The energy coming from the partition function (30) is 

 

 

                              
2

0

0 0

ln
coth ,

2

z EZ p
E p kT x x

β m B


    


                              (34) 

allowing us to compute the heat capacity, represented in the figure 1,  
2

2
.

sinh

E x
C k

T x


 


                                                (35) 

 

 

III. 3. Studiul analitic al fermionilor bazat pe funcții Heun 

 

 

By “graphene”, one generally denotes one planar layer of carbon atoms, arranged on a  

honeycomb structure made out of hexagons. Its low-energy excitations are massless, chiral, 

pseudo-particles, moving with a speed 300 times smaller than the speed of light [8]. 

As a special feature and also a trademark of Dirac fermion behaviour, which makes 

graphene a very attractive material from a theoretical point of view, is the anomalous integer 

quantum Hall effect measured experimentally [9], at room temperature [10]. Because the 

energetic states of the positrons within the barrier are aligned to the continuous energetic states 

of the electrons outside the barrier, these carriers are transmitted with unit probability [11]. As 

a result to the insensitivity to external electrostatic potentials, they evolve in an unusual way in 

the presence of confining potentials that can be easily produced by disorder. 

The properties of chiral massless particles, belonging to the distinct sub-lattices in  

graphene and described by the Dirac equation near the two points 𝐾 and 𝐾′ , being an active 
field of research, in a previous paper , we have considered a strong magnetic induction 

orthogonal to a weak electrostatic intensity. By employing the perturbation theory, we have 

derived the first-order transition amplitudes and the corresponding current. Then, we have 

generalized this analysis for arbitrary static magnetic and electric fields, and concluded that the 

Dirac-type equation of massless fermions is satisfied by the Heun biconfluent functions. Even  



though these functions have been intensively worked out in the last years, in situations relevant 

to physics, chemistry and engineering [12], there are problems when dealing with the general 

expressions. That is why, for having a better understanding of the physical phenomena, in the 

present paper, we focus on particularly interesting cases which can be investigated by using the 

corresponding series expansions, for some ranges of the parameters.  

 

Dirac -type equation and fermions’ wave function  

 

In  natural  units,  i.e.ℏ = 𝑐 = 1,  the  four-dimensional  Dirac  equation  describing  a 
massless fermion evolving in an electric field orthogonal to a magnetic field, oriented along 

𝑂𝑥 and 𝑂𝑧 respectively, is  

𝛾𝑖𝐷𝑖Ψ = 0,   𝐷𝑖 = 𝜕𝑖 − 𝑖𝑞𝐴𝑖 ,                                                       (1) 
where the covariant derivatives 𝐷𝑖 contains the components of the 4-potential 
 

𝐴2 = 𝐵0𝑥,      𝐴4 = 𝐸0𝑥. 
Putting everything together, we are able to write down the full expression of the wave  

function (3), up to a normalization factor 𝒩,  

Ψ = 𝒩𝑒𝑖(𝑝𝑦−𝜔𝑡)exp(−
𝜁2

2
+ 𝑎𝜁) × 

 

×

(

 
 
 
 

𝜁2𝐻𝐵1
𝜁2𝐻𝐵2

−
𝑖

𝑑𝜆2
[2 − (𝑏𝜆2 + 1)(𝜁2 − 𝑝𝜆𝜁) + 𝜁

𝑑

𝑑𝜁
]𝐻𝐵2

−
𝑖

𝑑𝜆2
[2 + (𝑏𝜆2 − 1)(𝜁2 + 𝑝𝜆𝜁) + 𝜁

𝑑

𝑑𝜁
]𝐻𝐵1)

 
 
 
 

,                          (18) 

where  

 𝑎 ≡ (𝑝𝜆)(𝑏𝜆2) = √2(𝑛 + 2) 
𝑏

𝑑
, and  𝐻𝐵1,2 ≡ 𝐻𝑒𝑢𝑛𝐵[2, −2𝑎, 𝑝

2𝑑2𝜆6, ∓2𝑝𝜆; 𝜁].     (19) 

 
The non-vanishing components of the current density defined as 

𝑗𝑖 = 𝑖𝑞Ψ̅𝛾 𝑖Ψ,   cu  Ψ̅ = Ψ†𝛽,                                                 (24) 
 

are the electric charge density 

𝜌𝑒 = 𝑞Ψ
†Ψ 

 

which  is  generating  an  electric  potential  through  the  Poisson  equation  and  the  spatial 

component, 𝑗𝑦, whose dependence on the external fields intensities is 

𝑗𝑦 =  𝑞Ψ
†𝛼2Ψ =

4𝑞

𝑑
|𝒩|2

𝜉2

𝜆2
[𝑝𝜆𝜁 − 𝑏𝜆2𝜁2]exp(−𝜁2) =                                 

 

=
4

𝐸0
|𝒩|2

𝑥∗
2

𝜆4
[(𝑝𝑦 +𝜔

𝑏

𝑑
) 𝑥∗ − 𝑏𝑥∗

2] exp (−
𝑥∗
2

𝜆2
) = 

 

≈
4𝑞2

𝐸0
|𝒩|2 (𝑥 +

𝜔

𝑞𝐸0
)
3

(𝐵0
2 − 𝐸0

2)(𝑝𝑦 − 𝑞𝐵0𝑥),                                 (25) 

 

𝜔  being quantized as in (17). 



Conclusions Chapter III 

 

 

In section  III.2., we deal with the Klein-Gordon equation for bosons evolving in a static 

configuration of orthogonal magnetic and electric fields. We derive the wave functions and the 

energy spectrum, similarly to the one reported by Novoselov, in graphene. In the semi-

relativistic limit, one can recover the well-known Landau levels. By varying the intensities of 

the external fields, one may reach the zero energy level, whose existence has a deep influence 

on the properties of the system of bosons. Finally, at low temperatures, we compute the 

partition function and the main thermodynamic quantities. 

These results are the very subject of the paper [13].  

In  section  III.3.,  starting  with  the  wave  function  characterizing   massless  fermions  

evolving in orthogonal electric and magnetic fields, written in terms of Heun Biconfluent 

functions, we analyse some physically interesting cases. When the HeunB function truncates 

to a polynomial form, one may easily compute the essential components of the conserved 

current density. For a vanishing electric field, we get the familiar Hermite associated functions 

and discuss the current dependence on the sample width. In the opposite case, corresponding 

to an electric static field alone, one has to deal with HeunB functions of complex variable and 

parameters.  

         These results are the very subject of the paper [14].  
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Chapter IV  
  

 

External symmetries in locally covariant formulation with applications in extra-

dimensions and Schrödinger cosmology 

 

III. 1. Gauge invariance geometry 

 

III.2. Geometrisation principles in extra dimensions 

 

III.3. The quantum treatment of the 5D-warped Friedmann–Robertson– Walker 

Universe in Schrödinger picture 

 

After the pioneering work of Randall and Sundrum (RS) [1], different braneworld 

scenarios have been formulated based on the idea that our Universe in which the particles of 

the standard model are trapped, is embedded in a higher dimensional hyperspace.  

Since, in the RS model, the matter is practically expelled from the brane, mechanisms 

of confinement have been proposed, among which the coupling to a scalar field is the most 

familiar. While for the four-dimensional Minkowski slices, the warp factor and the scalar wave 

function have been parametrized in terms of a model superpotential [2], when going to bent 

branes, one needs to solve in full the Einstein’s equations, in order to analyze how bulk modes 

interact with matter on the domain walls with de Sitter and anti-de Sitter geometries [3]. 

By assuming that the observed large-scale structure can exist on the brane embedded  

in an AdS5 bulk supported by the matter energy-momentum tensor of a perfect fluid, in the 

present work, we discuss the (timeless) Wheeler–De Witt (WDW) equation [4], written for the 

five dimensional k = 0—FRW Universe, whose warp factor and scale function have been 

obtained in a previous paper [5].  

 

Warped FRWUniverse 

 

Let us start by considering the 5-dimensional space as being described by the metric 

 

𝑑𝑠5
2 = 𝑒2𝐹(𝜏,𝑤)𝜂𝑖𝑘𝑑𝑥

𝑖𝑑𝑥𝑘 + (𝑑𝑤)2, 𝑖, 𝑘 = 1,4̅̅ ̅̅   ,                     (1) 

where (𝜂𝑖𝑘) = diag[1,1,1, −1] is the usual Minkowski metric and the warp factor, 𝑒𝐹, depends 

on the conformal time  𝜏 and on the extra dimension, 𝑥5 = 𝑤.  In order to employ the Cartan 

formalism, we define the pseudo-orthonormal frame {𝑒𝑎}𝑎=1,5̅̅ ̅̅ ,  whose dual bases is 

 

𝜔𝑎 = 𝑒𝐹𝑑𝑥𝑎,   𝜔5 = 𝑑𝑤 , 
so that 

𝑑𝑠5
2 = 𝜂𝑎𝑏𝜔

𝑎𝜔𝑏 , 
with (𝜂𝑎𝑏) = diag[1,1,1, −1,1]. From the first Cartan equation, 



 

𝑑𝜔𝜇 = −𝐹|4𝜔
𝜇 ∧ 𝜔4 − 𝐹|5𝜔

𝜇 ∧ 𝜔5,                                  (2) 

𝑑𝜔4 = −𝐹|5𝜔
4 ∧ 𝜔5, 

𝑑𝜔5 = 0,                                                                (3) 

where 𝜇 = 1,3̅̅ ̅̅ , pop up the connection coefficients 

𝛤𝛼4𝛼 = 𝐹|4,       𝛤𝛼5𝛼 = 𝐹|5,         𝛤454 =  − 𝐹|5,                                (4) 

and, by applying the General Relativity formalism, one comes all the way down to the 

following Einstein tensor components in the five-dimensional bulk 

𝐺𝛼𝛼 = − [2𝐹|44 + 3(𝐹|4)
2
] + 3[𝐹|55 + 2(𝐹|5)

2
], 

𝐺44 = 3(𝐹|4)
2
− 3[𝐹|55 + 2(𝐹|5)

2
],                                                 (5) 

𝐺55 = −3 [𝐹|44 + 2(𝐹|4)
2
] + 6(𝐹|5)

2
,           𝐺45 = −3𝐹|54.                     

 

As in  [5],  we are separating the variables in the warp function as 

 

𝐹(𝜏,𝑤) = 𝑓(𝜏) + ℎ(𝑤),                                                   (6) 

so that  𝐺45 = 0. One may easily check that a perfect fluid with 

 

𝑇𝑎𝑏 = (𝜌 + 𝑃)𝑢𝑎𝑢𝑏 + 𝑃𝜂𝑎𝑏,                                              (7) 

in a comoving  frame,  with 𝑢4 = −1 and (𝑢𝛼 , 𝑢5) = 0 is a suitable  source for the  Einstein’s 
equations, 

𝐺𝑎𝑏 + 𝜂𝑎𝑏Λ = 𝜅𝑇𝑎𝑏,                                                       (8) 

where Λ and 𝜅 stand for the cosmological constant and Einstein’s constant, in the five-
dimensional bulk.  

With this choice, (8) acquire the following explicit form: 

−𝑒−2(𝑓+ℎ) [2𝑓,44 + (𝑓,4)
2
] + 3 [ℎ,55 + 2(ℎ,5)

2
] + Λ = 𝜅𝑃; 

 

3𝑒−2(𝑓+ℎ)(𝑓,4)
2
− 3 [ℎ,55 + 2(ℎ,5)

2
] − Λ = 𝜅𝜌;                                   (9) 

 

−3𝑒−2(𝑓+ℎ) [𝑓,44 + (𝑓,4)
2
] + 6(ℎ,5)

2
+ Λ = 𝜅𝑃;                    

where 𝑓,4 is the derivative with respect to the conformal time, τ. From the first and the third 

equations, one may write down a geometric relation between the metric functions  f  and h: 

𝑒−2𝑓 [𝑓,44 + 2(𝑓,4)
2
] + 3𝑒2ℎℎ,55 = 0.                                         (10) 

The variables being separated, one can impose 

𝑒2ℎℎ,55 = 𝜔
2,                                                         (11) 

and come to the following solutions [4]: 

ℎ(𝑤) = ln [
𝜔

𝑄0
cosh(𝑄0𝑤)],                                        (12a) 

 

𝑓(𝑡) =
1

3
ln [

𝑏

2𝜔
sin(3𝜔𝑡)].                                            (12b) 

The constant  𝑄0 can be related to the cosmological constant of the AdS5 bulk (which 

also fixes the AdS5 scale) by  

𝑄0
2 = −

Λ

6
∼
1

𝐿2
  , 

and the parameter ω  is proportional to the absolute value of the cosmological constant on the 

visible brane, as in [6], 



𝜔 = √
|Ω|

3
. 

Finally, in order to understand the significance of the parameter b, we point out the fact that 

the scale function corresponding to (12b), 

𝑎(𝑡) = 𝑒𝑓(𝑡) = [
𝑏

2𝜔
sin(3𝜔𝑡)]

1
3⁄

,                                  (13) 

is actually describing a periodic Universe, with a finite-time cosmological singularity, for  

 

3𝜔𝑡𝑛 = 𝑛𝜋. 

When the Hubble’s rate defined as 𝐻 = 𝑓̇ vanishes, for  
 

3𝜔𝑡𝑘 = (2𝑘 + 1)𝜋 2⁄ , 

it occurs an instantaneous Minkowski-like phase, of maximum scale function 𝑎0, to which the 
parameter b can be associated, by 

𝑏 = 2𝜔𝑎0
3.                                                              (14) 

 

The Quantum Analysis 

 

As it is well-known, the quantum cosmology, in its traditional formulation, is based on the 

celebrated Wheeler–De Witt equation [4] 

𝐇𝜓 = 0,                                                           (15) 

where the only dynamical degree of freedom is the radius of the Universe, 𝑎, and 𝜓 is the wave 

function of the Universe. 

The geometro-dynamical analysis on the class of solutions 

 

𝑑𝑠5
2 = 𝑒2ℎ(𝑤)[𝑒2𝑓(𝑡)(𝑑�⃗�)2 − (𝑑𝑡)2] + (𝑑𝑤)2,   

where 𝑤 ∈ ℝ stands for the local coordinate along the fifth dimension and the warped function 

ℎ (𝑤) does specifically read (12a), is leading us to the following Hamiltonian-constraint-like 

equation 

 

𝐇 = �̇�2 + 𝑉(𝑎) = 0, 
with the effective potential 

𝑽 = 𝜔2𝑎2 −
𝑏2

4𝑎4
= 𝜔2𝑎2 [1 − (

𝑎0
𝑎
)
6

], 

for 𝑎(𝑡) given by (13). 

This suggests the definition of the “true” Lagrangian (not density or something else) 

 

𝐋[𝑎, �̇�] = ℓ0[�̇�
2 − 𝑽(𝑎)] , 

where  ℓ0 is  the inverse  of  the energy  scale  constant,  fixing the characteristic length which 
comes from the fifth dimension, and the action functional with respect to the Universe scale-

function reads, as usual, 

𝐒[𝑎] = ∫𝐋[𝑎, �̇�]𝑑𝑡. 

The corresponding canonic conjugate momentum 

p =
𝜕𝐋

𝜕�̇�
= 2ℓ0�̇� , 

together with the above Lagrangian, are leading, through the traditional canonic transformation 

𝐇 = p�̇� − 𝐋 , 



to the associated Hamiltonian 

𝐇 =
1

4ℓ0
p2 + ℓ0𝑽(𝑎).                                               (17) 

Treating �̂� and  p̂ as operators  with standard commutation relations,  in the coordinate 
representation, 

p → p̂ = −𝑖
𝜕

𝜕𝑎
, 

the WDW equation (15), with the potential (16), explicitly reads 

 

𝑑2𝜓

𝑑𝑎2
−𝑊(𝑎)𝜓 = 0,                                                      (18) 

with 

𝑊(𝑎) ≡ 𝑊0𝑎
2 [1 − (

𝑎0
𝑎
)
6

],                                              (19) 

where  𝑊0 = 4ℓ0
2𝜔2  is the characteristic  amplitude of the reduced potential 𝑊(𝑎).  

For small 𝑎 values, (18) acquires the following form: 

 

𝑑2𝜓

𝑑𝑎2
+
𝑑2

𝑎4
𝜓 = 0,                                                            (20) 

where 𝑑2 ≡ 𝑊0𝑎0
6, its solutions being expressed in terms of the Bessel functions as  

 

𝜓(𝑎) = √𝑎 ∙ 𝒥±1 2⁄ (
𝑑

𝑎
) = 𝑎√

2

𝜋𝑑
∙ {sin (

𝑑

𝑎
) , cos (

𝑑

𝑎
)}.                             (21) 

Now, one may apply the Residue Theorem to compute the integral 

∫ 𝜓2𝑑𝑎 =
2

𝜋𝑑

 

𝑹

∫ 𝑎2 sin2 (
𝑑

𝑎
)𝑑𝑎 =

8

3
𝑊0𝑎0

6
 

𝑹

. 

 

In the opposite situation, when one is able to neglect the ~ 1 𝑎4⁄  contribution in (19),  

the solution of the corresponding equation, 

 

𝑑2𝜓

𝑑𝑎2
−𝑊0𝑎

2𝜓 = 0, 

contains the Bessel function 𝑍±1 4⁄  of imaginary variable, so that 

𝜓 = √𝑎 ∙ 𝑍±1 4⁄ (±
𝑖

2
√𝑊0𝑎2). 

Let us turn now to the time-evolving Schrödinger version of the mini-superspace WDW 

equation (15), namely 

 

−
1

4ℓ0

𝜕2𝜓

𝜕𝑎2
+ ℓ0𝑉(𝑎)𝜓 = 𝑖

𝜕𝜓

𝜕𝑡
.                                                   (22) 

For stationary states, 

𝜓𝐸(𝑎, 𝑡) = 𝜓𝐸(𝑎)𝑒
−𝑖𝐸𝑡,                                                       (23) 

the amplitude functions 𝜓𝐸 must be solutions of the Schrödinger equation 
 

𝑑2𝜓𝐸
𝑑𝑎2

+ 4ℓ0(𝐸 − ℓ0𝑉)𝜓𝐸 = 0 , 

which can be written into the physically dimensionless form 



𝑑2𝜓𝐸
𝑑𝑎2

+ (𝜖 −𝑊(𝑎))𝜓𝐸 = 0,                                                   (24) 

where we have introduced the notations (19) and 

𝜖 ≡ 4ℓ0𝐸.                                                                         (25) 
Even though it is not possible to write down the analytical solution for the general Schrödinger- 

type equation (24), written as 

𝑑2𝑦

𝑑𝑎2
+ 𝑆(𝑎)𝑦 = 0, 

where, in our case, 

𝑆(𝑎) = 𝜖 −𝑊0𝑎
2 +

𝑑2

𝑎4
, 

one can study different properties, within theWKB approximation, valid for some ranges of the 

parameters. Thus, following the theory developed in [7], for 𝑆(𝑎) > 0 and 

 

−
1

4

𝑆′′

𝑆2
+
5

16

(𝑆′)2

𝑆3
≪ 1 

the solution acquires the periodic form 

𝑦(𝑎)~
𝐶

[𝑆(𝑎)]1 4⁄
sin 𝑔(𝑎) , 

where the phase 

𝑔(𝑎) = 𝐾 +∫ [𝑆(𝑥)]1 2⁄
𝑎

𝑥0

𝑑𝑥 

gives the number of zeros, 𝑎𝑘, up to 𝑎, for  𝑔(𝑎𝑘) = 𝑘𝜋. 
In  the  analyzis  of (24),  we  firstly  deal  with  small  𝑎 values,  for  which it becomes 
 

𝑑2𝜓

𝑑𝑎2
+ (𝜖 +

𝑑2

𝑎4
)𝜓 = 0.                                             (26) 

With the change of function 

𝜓 = √𝑎𝜑(𝑎),                                                     (27) 
the above equation reads 

𝑑2𝜑

𝑑𝑎2
+
1

𝑎

𝑑𝜑

𝑑𝑎
+ (𝜖 −

1

4𝑎2
+
𝑑2

𝑎4
)𝜑 = 0,                             (28) 

 

or, in terms of the new variable  𝜉 = (1 + 𝑎2) (1 − 𝑎2)⁄  ,  

 

𝑑2𝜑

𝑑𝜉2
+

2𝜉

𝜉2 − 1

𝑑𝜑

𝑑𝜉
+ 

+
1

(𝜉2 − 1)3
[𝜖 + 𝑑2 +

1

4
− 2(𝜖 − 𝑑2)𝜉 + (𝜖 + 𝑑2 −

1

4
)𝜉2] 𝜑 = 0.               (29) 

 

By comparing the last expression with the Heun equation [6] 

 

𝑑𝑦2

𝑑𝑧2
−

1

(𝑧2 − 1)2
[𝛼 + 2𝑧 + 𝛼𝑧2 − 2𝑧3]

𝑑𝑦

𝑑𝑧
+ 

+
1

(𝑧2 − 1)3
[𝛿 + (2𝛼 + 𝛾)𝑧 + 𝛽𝑧2]𝑦 = 0,                                     (30) 

one may identify the function 𝜑  as being the Heun Double Confluent function, HeunD  [8],  

of variable 𝜉 = (𝑎2 − 1) (𝑎2 + 1)⁄  and parameters 



𝛼 = 0, 𝛽 = 𝜖 + 𝑑2 −
1

4
, 𝛾 = −2(𝜖 − 𝑑2), 𝛿 = 𝜖 + 𝑑2 +

1

4
.         (31) 

As for large 𝑎-values, once we neglect the ~1 𝑎4⁄  contribution, the resulting equation 

𝑑2𝜓

𝑑𝑎2
+ (𝜖 −𝑊0𝑎

2)𝜓 = 0                                            (32) 

is satisfied by the Hermite associated functions [9] 

𝜓𝑛(𝑎) = 𝐶𝑛exp (−
1

2
√𝑊0𝑎

2)𝐻𝑛(𝑊0
1 4⁄ 𝑎),                            (33) 

with the energy spectrum 

𝜖𝑛 = (2𝑛 + 1)√𝑊0 ⇒ 𝐸𝑛 = (𝑛 +
1

2
)𝜔 = (𝑛 +

1

2
)√
|Ω|

3
.           (34) 

In the simplest non-trivial case, we can consider the mixture of the ground and first 

excited states, 

𝜓0(𝑎, 𝑡) = (
𝑊0
𝜋2
)
1 8⁄

exp [−
1

2
√𝑊0𝑎

2] exp [−
𝑖

2
𝜔𝑡], 

(35) 

𝜓1(𝑎, 𝑡) = √2 (
𝑊0
3

𝜋2
)

1 8⁄

𝑎 exp [−
1

2
√𝑊0𝑎

2] exp [−
𝑖

2
𝜔𝑡], 

 

with the respective initial probabilities 3/4  and 1/4, and it yields the periodic function 

 

𝑎(𝑡) =
1

2
(
𝑊0
𝜋2
)
1 4⁄

∫ 𝑎𝑒−√𝑊0𝑎
2
[√
3

2
+𝑊0

1 4⁄ 𝑎𝑒𝑖𝜔𝑡]
∞

−∞

[√
3

2
+𝑊0

1 4⁄ 𝑎𝑒−𝑖𝜔𝑡] 𝑑𝑎 = 

=
1

4
√
3

ℓ0𝜔
cos(𝜔𝑡).                                                    (36) 

For large values of the quantum number 𝑛, so that  𝜖 ≫ 4√𝑊0, we write the solution  

of  (32) as 

𝜓 ∼
1

√𝑎
𝑀𝜆,𝜇(√𝑊0𝑎

2),                                                       (37) 

 

where 𝑀𝜆,𝜇  is the Whittaker function with [7]  

 

𝜆 =
1

4

𝜖

√𝑊0
,           𝜇 =

1

4
, 

and by employing the asymptotic representation (valid for large λ-values)  

 

𝑀𝜆,𝜇(𝜉)  ∼
1

√𝜋
Γ(2𝜇 + 1)𝜆−𝜇−

1
4𝜉
1
4 cos (2√𝜆𝜉 − 𝜇𝜋 −

𝜋

4
),            (38) 

we get the “free particle” amplitude function 

𝜓 ∼
𝑊0
3 8⁄

√𝜖
sin√𝜖 𝑎.                                                          (39) 

   In this section we discuss the time-evolving Schrödinger version of the WDW equation for 

the five dimensional k = 0—FRW Universe, whose warp factor and scale function are 

respectively given by (12a) and (13). 



Even though there is an active debate on how one is able to include in the theory a time 

derivative term in the frozen WDW equation, strategies for connecting it to the time depending 

Schrödinger equation have been proposed [10]. 

Our geometro-dynamical analysis is based on the effective potential (16) for which the 

Schrödinger equation written for stationary states is (24). Such an equation does not have an 

analytical closed form solution, for W(a) given by (19). However, for specific ranges of the 

parameters, one may study different properties, as for example the density of nodes of the 

corresponding wave functions, using the WKB approach developed in [7]. For small a values, 

we get the wave function is expressed in terms of the Heun Double Confluent function, of 

parameters (31). 

Even though these functions have been intensively worked out in the last years, in situations 

relevant to physics, chemistry and engineering [11], there are unsolved problems when dealing 

with the general expressions, especially related to their normalization or series expansions. 

However, physically reasonable solutions describing the stationary spectra of comptonization 

in a photon flux along the frequency axis, written in terms of the HeunD function and its 

derivative, have been discussed in [12]. 

In the opposite situation (𝑎 large), the results can be put in a more transparent form, the  
corresponding Hermite associated functions leading, for the mixture of the ground and first 

excited states, to the periodic function (36). Finally, for from the asymptotic representation of 

the Whittaker function, (38), valid for large values of the quantum number 𝑛, it pops up to the 

“free particle” amplitude (39). 

 

 

 

IV.4. On a Schrödinger-like equation with some special potential 

 

 

Conclusions Chapter IV 
 

Section IV.3. is  devoted  to the  time-evolving  Schrödinger version  of  the  Wheeler-  

DeWitt equation, written for the five dimensional warped k = 0—FRW Universe. For small 

values of the cosmological scale factor, a, the wave function of the Universe is expressed in 

terms of the Heun Double Confluent functions, which have been intensively worked out in the 

last years. As expected, for large a’s, one gets the well-known Hermite associated 
functions.Within the semiclassical approximation, valid for large n, the asymptotic 

representation of the Whittaker functions leads to the “free particle” behavior. 

These results are the very subject of the paper [13].  

 

Secțion  IV.4. is devoted to the  time-evolving one-dimensional  Schrödinger  equation  

for stationary state with some special potential, version of the Wheeler-De Witt equation. For 

small values of the cosmological scale factor the wave function of the Universe is expressed in 

terms of the Heun Double Confluent functions. For large values one gets the well-known 

Hermite associated functions. 

These results are the very subject of the paper [14].  
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General conclusions 
 

 

 

Since every chapter contains a section of conclusions in which the main results are 

highlighted by making comparisons with the works of other authors too, in this section we are 

going to synthetize a few general conclusions that we consider outstanding and which represent 

the subject of the works published in magazines ISI rated and in magazines acknowledged by 

CNCSIS.  

The results can be synthetized in the following way:  

 

1. Starting from a class of planary symmetric metrics in null-coordinate formulation  

I obtained the Killing vectors. Using a proper change of coordinates, I calculated the Lie 

derivative of metric  

𝑑𝑠2 = 𝑒2𝑓(𝑧,𝑡)(𝑑𝑥2 + 𝑑𝑦2) + 𝑑𝑧2 − 𝑑𝑡2  . 
By respecting   the  conditions  of   integrability  I  solved  the  corresponding   Killing  

equations.  

 [C. Crețu, C. Dariescu, On  the Isometry Group for a Class of Planary Symmetric Metrics in 

Null-coordinate Formulation , presentation at TIM14 Physics Conference, Univ. de Vest, 

Timișoara, (2014).] 

 

2. Using  an  idea of  R.G. Beil, we  modify  the  Minkowski  metric of  the  space  in  

which a charged particle moves according to Lorentz equation. The modification is such that, 

with the new metric and in the new space, the particle moves on a geodesic. The process of 

obtaining the metric appears like a gauge transformation. The dependence on the point (x) and 

speed (v) of the scale factor 𝑏 is transmitted to vector  𝐵𝜇 and even further to the metric �̅�𝜇𝜈.  

Being dependent on point and speed,  �̅�𝜇𝜈(𝑥, 𝑣)  is a generalized Lagrange metric.  

[C.Crețu, Electrodynamics from modified Schwarzschild metric , presentation at TIM13 

Physics Conference, Univ. de Vest, Timișoara, (2013).] 

 

3. For the relativist bosons evolving in static orthogonal electric and magnetic fields, I 

obtained the wave functions and the energetic spectra, in a good concordance with the results 

of other authors. Within the thermodynamic study, the partition function expressed by the Euler 

and Riemann generalized functions lead to the main thermodynamic sizes of the magnetization 

and susceptibility. The equation of state contains the term of Hall type and additional 

contributions which characterize the ultra-relativist particles. In particular cases,  for a certain 

domain of parameters,  the equation of state leads to classical thermodynamic results (high 

temperatures) and to quantic effects (low temperatures) in accordance with Nernst theorem. 

[M.A. Dariescu,  O. Buhucianu , C. Creţu,  The Lorentz-invariant  U(1)-gauge theory of scalars 

in static external fields and thermal properties, Buletinul Institutului Politehnic din Iaşi, Tomul 

LVIII(LIX), Fasc. 2, p. 43, (2012).] 

 

4. Starting  with  the  wave  function  characterizing   massless  fermions  evolving  in  

orthogonal electric and magnetic fields, written in terms of Heun Biconfluent functions, I 

analyzed some physically interesting cases. When the HeunB function truncates toa polynomial 

form, one may easily compute the essential components of the conserved current density. For 

a vanishing electric field, I obtained the familiar Hermite associated functions and I discussed 



the current dependence on the sample width. In the opposite case, corresponding to an electric 

static field alone, one has to deal with HeunB functions of complex variable and parameters.  

 [Dariescu,  C. Dariescu,  C. Creţu, O. Buhucianu, Analytic Study of Fermions in Graphene; 

Heun Functions and Beyond,  Rom.Journ.Phys.,Vol. 58, Nos.7-8, p. 706, Bucharest, (2013).] 

 

5. I analyzed the time-evolving Schrödinger version of the Wheeler–De Witt equation,  

written for the five dimensional warped k = 0-FRW Universe. For small values of the 

cosmological scale factor, a, the wave function of the Universe is expressed in terms of the 

Heun Double Confluent functions, which have been intensively worked out in the last years. 

As expected, for large a’s, one gets the well-known Hermite associated functions.Within the 

semiclassical approximation, valid for large n, the asymptotic representation of the Whittaker 

functions leads to the “free particle” behavior. 

 [M.A.Dariescu, C.Dariescu, C.Crețu, The Quantum Treatment of the 5D-Warped Friedmann–

Robertson–Walker Universe in Schrödinger Picture, International Journal of Theoretical 

Physics, Volume 52, Issue 4, p. 1345, (2013).] 

 

6. I detailed  the time-evolving  one-dimensional  Schrödinger equation  for  stationary  

state with some special potential, version of the Wheeler-De Witt equation. For small values 

of the cosmological scale factor the wave function of the Universe is expressed in terms of the 

Heun Double Confluent functions. For large values one gets the well-known Hermite 

associated functions. 

[C.Crețu, On a Schrödinger-like equation with some special potential, Buletinul Institutului 

Politehnic din Iaşi, Tomul LIX(LXIII), Fasc. 3, p. 67, (2013).] 
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